

Manual EMU Professional II Lora

Document Reference: 1490 Version: 2.9 Date: 12.12.2024

Inhaltsverzeichnis

1	LoRa Interface			4 4
	De- and Encoder and Payload-Generator	 		$\frac{4}{4}$
	Note on Installation	 		$\frac{4}{5}$
	Hardware			5
	Start of Operation	 		$\frac{6}{7}$
	Service			7
2	Operation			8
	LoRa DevEUI			8
	LoRa DevEUI 1/4			8
				9
				9
		• •		9
	LORA APPREY (UTILY WILLTOTAA)	• •		9
		•••		9
	LORA NWRSKEY (Only with ABP) \ldots	• •		9 10
	LoRa JoinMode (Available with OTAA and ABP)	• •		10
	OTAA Over the Air Activation	•••		10
	LoRa Join	· ·		10
	LoRa Test			10
	LoRa Antenna			11
	LoRa interface			11
2	Join Dequect			12
3	Test if Lora Module is still connected to Lora Network		•	12
4	Downlink Messages			13
	Configuration of Measurement Sending			13
	Description of Downlink Message			13
	Example for 1 minute interval adjustment			14
	Example for register transmission			14
5	Linlink Message			15
5	loin / Rejoin			15
	DeviceTimeReg / Time Synchronization	• •		15
	Sending of Measurements	· ·		15
c	Structure of Unlink Deckerson			16
0	Structure of Oplink Packages			10
		•••		10
	ralkaye ⊏XaIIIµie	• •		10 17
		• •		11 17
	Device Timercy / Time Synchronization	•••		11 17
				11
7	Measurement-Registers			18
	Status Codes			19
	CRC-8 Checksum			20

Version	Revision Date	Token	Changes
V1.0	01.07.2021	fbo, met	Creation of Document
V1.1	22.02.2022	fbo, met	Fixed time interval
V1.2	19.04.2022	met	Fixed unit and resolution
V1.3	11.05.2022	met	Rework of Doc.Ref numbers. Same document in different language no longer has a different Doc Ref number
V1 4	13 06 2022	met sha	Minor miscellaneous error fixes
V2.0	30.11.2022	met	Rework of document structure
V2.1	30.03.2023	met	AppEUI is now DevEUI
V2.2	02.06.2023	met	SMA connector clarified
V2.3	19.06.2023	met	Expansion on external antenna
V2.4	11.04.2024	fbo	Fix for options for downlink
V2.5	19.04.2024	sha	Add DeviceTimeReq example
V2.6	30.07.2024	met	Added OBIS Codes
V2.7	07.11.2024	met	Lora uplink interval and data logger interval clarified
V2.8	14.11.2024	met	Lora connection diagram added
V2.9	12.12.2024	met	Lora En- and Decoder html page link added

LoRa Interface

- The EMU Professional II Lora is compatible to LoraWAN \ge 1.0.3 (Class C).
- The EMU Professional II Lora permanently saves the needed parameters for Lora and its configuration on the Lora-module.
- A re-parametrization is only possible via the meter display or via a Lora downlink message.
- The EMU Professional II Lora autonomously synchronizes its internal clock at least once per day via a regularly scheduled DeviceTimeReq.
- The EMU Professional II Lora determines and optimizes its own transmit parameters (data rate, SF-factor etc.).
- The default meter uses an internal antenna for communication. A meter with an external antenna is only available through special request.

Wote: Operation of the EMU Professional II Lora with a SMA-connector is only allowed with an attached antenna!

Note: per default the external antenna is deactivated!

Danger: An improperly installed antenna may damage the EMU Professional II Lora!

IT Environment

The Client is responsible for a functioning Lora net-infrastructure (Gateway, Network and Application server). EMU Electronic AG can support the client in installing the chosen solution if requested. The Lora interface can be used with the common gateways like devices from Kerlink or Laird.

Lora-Server

At the time of printing the EMU Professional II Lora has been successfully tested with TheThingsNetwork and Chirpstack.

De- and Encoder and Payload-Generator

Vote: The following link provides relevant en- and decoders for both platforms as well as a generic template for easy downlink-package creation. https://github.com/emuag/professional_II_lora

The en- and decoder are also on our website and can be found directly via the following links:

- Decoder: https://www.emuag.ch/files/software/Lora-Payload-Decoder.html
- Encoder: https://www.emuag.ch/files/software/Lora-Payload-Generator.html

Note on Installation

Make sure to disconnect all current and voltage connections before installation of the external antenna!

Make sure that the SMA connector is fitted correctly. The maximum torque for the union nut must not exceed 1Nm.

If you are using an external antenna the option "external" in the settings menu "LoRa Antenna" must be set. Otherwise, the meter will continue to send on the internal antenna.

Vote: For further documentation please consult the document "Manual EMU Professional II " Doc.Ref: 1451

Connection Diagram Lora external Antenna

The EMU Professional II Lora Extern meter always has an internal antenna in addition to the SMA socket for the external antenna.

Vote: The Lora interface is the same for both the EMU Professional II 3/100 Lora Extern and the EMU Professional II 3/5 Lora Extern.

Hardware

The Lora interface of the EMU Professional II LoRa is based on the Lora transmission standard. This means the meter can reliably transmit data over large distances in environments without permanent communication. To ensure a stable and high-performance link to the Lora gateway the meter constantly adapts the optimal transmit and receive parameters independently. For an easier integration into the network, you can check the status of the network connection on the display.

- Frequency: EU 863-870MHz
- Type: Class C Device
 - Two-way communication.
 - $\circ\,$ The Lora interface is available anytime for downlink messages (Class C).
 - $\,\circ\,$ The interface transmits with a signal strength of 14dbm.
- To connect an external antenna to the SMA-connector, use an antenna with a SMA-plug. Note that the option for the external antenna must be activated on the meter if an external antenna is attached.

Note: The use of a RP-SMA antenna (with an adapter) is not recommended.

Vote: In case the EMU Professional II Lora is connected to a Lora network without Class-C support the meter acts as a Class-A device.

Wote: The EMU Professional II Lora operates with an adaptive data rate. Use as a roaming device should be carefully clarified beforehand.

Start of Operation

Every meter is shipped with:

- Join-Modus: OTAA
- DeviceEUI (starting with 10 2C EF)
- Appkey
- JoinEUI (formerly: AppEUI) (10 2C EF 00 00 00 00 00)

The Dev-EUI and the AppKey can be read out on the display, the JoinEUI (formerly: AppEUI) is 10 2C EF 00 00 00 00 on every meter.

- Make sure that the meter is connected correctly (Phase and line sequence, direction of flow of energy).
- Make sure that the current and voltage transformer ratios of the converter counter are configured correctly.
- The EMU Professional II Lora is designed for fast detection of potential problems in connection range or throughput.
- Repositioning of the Lora gateway is possible after the installation of the EMU Professional II Lora. If the recommended distances are adhered to, the meter continues to communicate with the Lora server.
- Operation of the meter with a SMA-connector is only allowed with an attached antenna.

Example-Integration in The Things Network

The EMU Professional II Lora is available for selection on "The Things Network" as a predefined meter.

The JoinEUI you need to provide is always 10 2C EF 00 00 00 00 00 00, the DevEUI and AppKey are individual for each meter.

End device type					
Input Method					
• Select the end device	in the LoRaWAN Device Repository				
Enter end device spec	ifics manually				
End device brand ⑦ * 1	Model⊙* 2 Har	rdware Ver. ⊘ *	Firmware Ver. ⊘ *	Profile (Region)*	
EMU Electronic AG	EMU Professional II V	.0 🗸 🗸 🗸	1.0 🗸 🗸	EU_863_870	\sim
	EMU Professional II LoRa				
· · · · ·	LoRaWAN Specification 1.0.3, RP001 F	Regional Paramet	ters 1.0.3 revision A, O	Over the air activation	n
CHC Participanti Jan History Janese ••	(OTAA), Class C				
	3-phase energy meter with MID B+D a	pproval for billing	g purpose. Connectio	on: Direct (100A) or	
ENG.	indirect (CT /5 and /1A). Internal clock	k. External or inte	rnal antenna.		
	Product website				
Frequency plan 🔊 *					
Europe 863-870 MHz (SF	9 for RX2 - recommended)	\sim			
Provisioning inform	ation	DevEUI is	identical for all me	eters	
10 20 FF 00 00 00	AA AA Reset				
This end device can be reg	zistered on the network	unique world	wide. Starts with 1	0.2C.FF	
DevEIII@*					
	A2 60 C1 Concepto 0/50 usos				
10 20 EF FF FE 01	Go Griefate 0/30 use	AppKey can b	e generated on th	e meter	
АррКеу ⑦ *					
C4 06 4C 38 3D EE	A4 8F 32 03 67 9C D0 97 F2	86 🗘 Ger	nerate		
End device ID ⑦ *					

eui-102ceffffe010369

This value is automatically prefilled using the DevEUI

Service

The LoRa interface is designed to monitor its connection to a Lora network. If the connection is severed an automatic Re-Join is done. This monitoring happens at least once every 24 hours. This also allows for easy migration to a new Lora network. If needed, you can order the meter to do time based Re-Joins via a downlink.

Operation

The following sub menus explain the settings for the EMU Professional II Lora.

Note: For further documentation please consult the document "User Manual EMU Professional II " Doc.-Ref: 1451

LoRa DevEUI

A long press of the "Arrow Down" button changes the subpage.

LoRa DevEUI 1/4

This page shows the DevEUI of the Lora module. The DevEUI is 64bit, hex coded.

LoRa JoinStatus 2/4

Joined: If the meter is connected to a Lora network. Lst. Uplink: ACK/NACK (with or without acknowledge) Timestamp of the last Uplink

LoRa Status 3/4

RSSI: The received field strength SNR: Signal to noise ratio SPF: Spreading factor BW: Bandwidth

LoRa JoinMode 4/4

OTAA or ABP Lst. Downlink: ACK/NACK (with or without acknowledge) Timestamp of last Downlink

LoRa AppKey (only with OTAA)

A short press of the SRVC button shows the current AppKey. Using the "Arrow right" button you can generate a new AppKey.

A second short press (<2s) of the SRVC button exits the edit mode **without changing** the AppKey.

A second long press (>2s) of the SRVC button finalizes the generation of the new AppKey and exits the edit mode automatically. The successful generation of a new AppKey is receipted with a short flashing of the display backlight.

The newly created AppKey can now be read out by a short press of the SRVC button.

LoRa DevAddr (only with ABP)

A short press of the SRVC button shows the current DevAddr. Using the "Arrow right" button you can generate a new DevAddr.

A second short press (<2s) of the SRVC button exits the edit mode without changing the DevAddr.

A second long press (>2s) of the SRVC button finalizes the generation of the new DevAddr and exits the edit mode automatically. The successful generation of a new DevAddr is receipted with a short flashing of the display backlight.

The newly created DevAddr can now be read out by a short press of the SRVC button.

LoRa NwkSKey (only with ABP)

A short press of the SRVC button shows the current NwkSKey. Using the "Arrow right" button you can generate a new NwkSKey.

A second short press (<2s) of the SRVC button exits the edit mode without changing the NwkSKey.

A second long press (>2s) of the SRVC button finalizes the generation of the new NwkSKey and exits the edit mode automatically. The successful generation of a new NwkSKey is receipted with a short flashing of the display backlight.

The newly created NwkSKey can now be read out by a short press of the SRVC button.

LoRa AppSKey (only with ABP)

A short press of the SRVC button shows the current AppSKey. Using the "Arrow right" button you can generate a new AppSKey.

A second short press (<2s) of the SRVC button exits the edit mode without changing the AppSKey.

A second long press (>2s) of the SRVC button finalizes the generation of the new AppSKey and exits the edit mode automatically. The successful generation of a new AppSKey is receipted with a short flashing of the display backlight.

The newly created AppSKey can now be read out by a short press of the SRVC button.

LoRa JoinMode (Available with OTAA and ABP)

A short press of the SRVC button lets you adjust the parameter. Using the "Arrow right" lets you select the desired JoinMode.

A second short press (<2s) of the SRVC button exits the edit mode without changing the JoinMode.

A second long press (>2s) of the SRVC button finalizes the new JoinMode and exits the edit mode automatically. The successful save is receipted with a short flashing of the display backlight.

Note: After a successful change of the JoinMode you need to provide your LoRa server with the new keys.

OTAA Over the Air Activation

The Lora interface of the EMU Professional II LoRa can use OTAA. The communication module arranges encryption with the Lora network server and joins the network. There can only exist one 1:1 connection between meter and Lora network. This mode of communication offers increased security against third party involvement.

LoRa Join

Execution of a (re-)join.

A short press of the SRVC button lets you adjust the parameter. Using the "Arrow right" lets you select "reboot".

A second short press (<2s) of the SRVC button exits the edit mode without changing anything.

A second long press (>2s) of the SRVC button starts the (Re-)Join and exits the edit mode automatically. The successful save is receipted with a short flashing of the display backlight.

LoRa Test

Send an immediate uplink message with the configuration of slot 1 to the LoRa network.

A short press of the SRVC button lets you adjust the parameter. Using the "Arrow right" initiates the uplink.

A second short press (<2s) of the SRVC button exits the edit mode without changing anything.

A second long press (>2s) of the SRVC button starts the uplink and exits the edit mode automatically. The successful send is receipted with a short flashing of the display backlight.

Wote: This uplink can only be sent if slot 1 is marked as active.

Note: This uplink can only be sent if no duty cycle restrictions apply.

LoRa Antenna

Allows for easy switching between internal and external antenna.

A short press of the SRVC button lets you adjust the parameter. Using the "Arrow right" selects the antenna.

A second short press (<2s) of the SRVC button exits the edit mode **without changing** the antenna configuration.

A second long press (>2s) of the SRVC button saves the selection and exits the edit mode automatically. The successful save is receipted with a short flashing of the display backlight.

DANGER: Make sure the meter is voltage free for the installation of the external antenna. The meter may be damaged from non-observance of installation instructions. Keep to the instructions!

DANGER: The antenna must be attached before changing this setting!

LoRa interface

Allows for a soft reset (Soft-Reset) of the LoRa module or the reset to factory settings (Factory RESET).

A short press of the SRVC button lets you adjust the parameter. Using the "Arrow right" lets you select the reset.

A second short press (<2s) of the SRVC button exits the edit mode without changing anything.

A second long press (>2s) of the SRVC button finalizes the reset and exits the edit mode automatically. The successful reset is receipted with a short flashing of the display backlight.

Vote: A reset of the LoRa module does not change or impair any measurements, meter readings or other measurement relevant processes of the EMU Professional II LoRa.

Join Request

If no Join request has occurred the EMU Professional II Lora regularly tries to connect to a Lora network. These Join requests occur randomly in a \pm 10 min period to counteract bandwidth problems if multiple meters are in the same network.

 $rac{1}{2}$ Note: The up- and downlink counter is reset to 0 after a restart of the EMU Professional II Lora.

Test if Lora Module is still connected to Lora Network

The EMU Professional II Lora checks its connection to the Lora network at least once per day. You can configure the data packages to request an ACK on each uplink transmission. If this option is set the meter can react much faster to a disconnect.

If the EMU Professional II Lora

- receives no ACK on its uplink messages within 24 hours,
- or the connection check (once every 24 hours) for the continued connection to the Lora network fails,

it automatically starts a new (Re-)Join process.

This check for continued connection to the Lora network can also be done via the time synchronization (DeviceTimeReq) or an uplink message to a dedicated fPort with an ACK.

Downlink Messages

The EMU Professional II Lora may acknowledge every received downlink transmission.

Configuration of Measurement Sending

- You can configure which measurement registers should be sent in what interval via a downlink message.
- Only measurements from the data logger and logbook are available for read out.
- There are 10 "Slots" available for this configuration which are represented by the fPorts 1-10.
- Only 10 measurements can be saved per Slot.
- Lower Slots have a higher priority.
- Per default the following measurement registers are transmitted:
 - See Default-Uplink
- You can configure in what interval the data is transmitted. The interval can be set from 1 minutes to a maximum of 67'500 minutes (45 days). Note, that for intervals shorter than 15 minutes, the data logger interval may need to be adjusted, as the data for the Lora transmission is taken from the data logger. E.g. If your Lora transmission interval is set to 1 min and your data logger interval is set to 5 min you will receive the same data for 5 minutes via the Lora interface (see "Manual EMU Professional II " Doc.Ref: 1451)
- Do you want your Lora network to send an ACK for every received transmission by the meter: Yes/No?
 - If Yes: Should the network not acknowledge the package, the meter will resend the package (up to 3 times).
- Select if this profile is active or not.

Wote: A generic template to generate your downlink message can be downloaded from: https://github.com/ emuag/professional_II_lora.

Vote: If you only change the transmission interval the downlink message will only contain the 2 interval bytes as well as the flags for ACK and active without further register data.

Vote: If the Airtime of the meter does not accommodate a too large transmission, the transmission will only be sent partially or not at all.

Description of Downlink Message

The Bit-Order is LSB, the Byte-Order is Little-Endian.

Configuration of which registers are sent.

Length in Bytes: 4 Bytes - 13 Bytes fPort: 1-10

Byte	Description	Example
0-1 2	Time interval in minutes Configurations-Flags	0x01 0x00 - 0xFF 0xFF
3-12	IDs of registers in transmission CRC-8	0x03 see definition

Configuration Flag Byte

Byte	Bit	Description
00000000	1	Settings are unchanged
00000000	2	No ACK expected after upload
0000010	2	ACK expected for each upload

Byte	Bit	Description
00000100	3	Do a (Re-)Join after ca. 60 minutes to an existing/new network
00000000	3	not defined
00000000	4	Port deactivated
00001000	4	Port activated
00010000	5	not defined
00000000	5	not defined
00100000	6	not defined
00000000	6	not defined
01000000	7	not defined
00000000	7	not defined

For a list of possible register IDs consult the Measurement-Register

Note: If only Byte 0 + 1 + config-Byte + CRC-8 are sent, the transmission interval and the configuration flags are changed accordingly. The measurement registers are not changed.

Example for 1 minute interval adjustment

var data =[0x01, 0x00, 0x08, 0x53]; 0x01 0x00 -> 1 Minute interval. 0x08 -> No ACK, no re-join, port is active. 0x53 -> CRC-8 checksum

Example for register transmission

This example shows the needed data downlink for an uplink of the energy registers "Active & Reactive Energy Import & Export Tarif 1&2" each minute.

```
var data = [0x01, 0x00, 0x0A, 0x01, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x83]
0x01 0x00 -> 1 Minute interval
0x0A -> ACK, no re-join, port is active.
0x01 -> Timestamp
0x03 - 0x0A -> Register chosen for uplink.
0x83 -> CRC-8 Checksum
```

Uplink Message

The following messages can be sent by the EMU Professional II Lora:

- Join / Rejoin request
- Time synchronization
- Monitor network affiliation
- Sending of measurement registers

Join / Rejoin

The EMU Professional II Lora performs a Join / Rejoin with a Lora network.

DeviceTimeReq / Time Synchronization

While operating normally the EMU Professional II Lora regularly (min. once every 24h, max. once per hour) tries to get the current time and date. The meter adjusts its internal clock according to the following criteria:

- If the old and new time differ less than 2 seconds the meter accepts the new time as a time synchronization and sets the new time.
- If the difference is more than 2 seconds the meter will ask the current time at least 3 more times to make sure the new time is correct.

After starting or if the internal buffer for the RTC is used up the meter verifies the time with at least 3 Device-TimeReq requests. These three time requests happen in a 3 minute time frame.

Vote: The operator of the Lora infrastructure must ensure that the meter can synchronize its time regularly for proper operation of the EMU Professional II Lora. For this the optimal solution is the Lora DeviceTimeReq command.

Sending of Measurements

- The EMU Professional II Lora sends all requested measurement register directly from its data logger via Lora without any changes to the data.
- The requested measurements are read from the data logger at the due date.
- The transmission must therefore begin and end in the transmission interval.

Example of a transmission interval of 15 minutes:

- 09:00:02am: The Lora communication module reads out the latest data logger entry. The values stored there are from 09:00:00am.
- 09:00:03am 09:14:59am: The meter tries to transmit the data via the Lora network.
- 09:15:02am: The Lora communication module reads out the latest data logger entry. The values stored there are from 09:15:00am.

Wote: Be aware that, if you operate multiple meters in the same Lora network, transmissions by these meters may collide.

Vote: If the EMU Professional II Lora cannot transmit its packages due to network conditions such as SF too high or data rate too slow, the meter only transmits one package of data. All further measurement registers will not be transmitted later. Please make sure to configure your meter and Lora network to allow for the full transmission of data.

Structure of Uplink Packages

The bit order is LSB, the byte order is Little-Endian. The four first bytes are always the timestamp from the data logger.

First Telegram after Join with a Lora Server

fPort: 100 Length: 29

Structure:

Byte	Description
0-3	current system time
4	Туре
5-8	Serial number
9	Туре
10	Meter type
11	Туре
12-13	Current transformer primary
14	Туре
15-16	Current transformer secondary
17	Туре
18-19	Voltage transformer primary
20	Туре
21-22	Voltage transformer secondary
23	Туре
24-27	MID year of certification (BCD)
28	CRC 8-bit

Package Example:

```
#System time
#Serial number 22150405
#Meter type Converter Counter -> 2
#Current transformer ratio 5:5
#Voltage transformer ratio 100:100
#MID-year of certification 2022
CRC should be 0x65
var data = [0x68, 0x9b, 0xa8, 0x62,
                                             // System time 0x62A89B68
                                             // -> 1655217000
                                             //->Tuesday, 14. Juni 2022
                                            // 16:30:00 GMT+02:00 DST
           0xf1, 0x05, 0x04, 0x15, 0x22,
                                            // Serial number 0x22150405
                                            //-> 22150405
           0xf7, 0x02,
                                            // Meter type 0x02 \rightarrow 2
           0xf3, 0x05, 0x00,
                                            // Current transformer primary 0x0005
                                            //-> 5
           0xf4, 0x05, 0x00,
                                            // Current transformer secondary 0x0005
                                            //-> 5
           0xf5, 0x64, 0x00,
                                            // Voltage transformer primary 0x0064
                                            //-> 100
           0xf6, 0x64, 0x00,
                                            // Voltage transformer secondary 0x0064
                                            //-> 100
           0xf8, 0x02, 0x00, 0x02, 0x02, // MID year, BCD -> 2022
           0x65]
                                            // CRC-8 Checksum
```

Default-Uplink

After first start up or after resetting to factory settings the meter will send the following telegram: fPort: 1 Length: 27 Interval: every 15 minutes the most current entry from the meter's data logger. Structure:

Byte	Description	
0-3	Time stamp	
4	Тур	0x03
5-8	Active energy import L123 T1	
9	Тур	0x04
10-13	Active energy import L123 T2	
14	Тур	0x05
15-18	Active energy export L123 T1	
19	Тур	0x06
20-23	Active energy export L123 T2	
24	Тур	0xFF
25	Error code	
26	CRC 8-bit	

The fPorts 1-10 can be changed individually as described in Downlink Messages.

DeviceTimeReq / Time Synchronization

This uplink contains no payload and is only used for time synchronization.

fPort: 100 Length: 2 Structure:

Byte	Description
0-3	DeviceTimeReq

Package Example:

#Time Synchronization

var data = [0x00, 0x00]

```
// DeviceTimeReq
```

Measurement-Registers

The energy measurements and technical information is read out of the data logger of the EMU Professional II Lora. These measurements are stored at the end of a measurement period (15 minutes).

The OBIS codes are shown in their simplified version.

Note: Changes to the configuration of the EMU Professional II Lora, e.g. current transformer ratio, are updated at the end of a measurement period in the data logger.

ID	Туре	Description	Unit	Resolution
0x00	uInt32	Index	Index	
0x01	uInt32	Time stamp	Time	Epoch
0x02	uInt32	Original time stamp of the entry	Time	Epoch
0x03	uInt32	Active energy import L123 T1	Wh	1 Wh
0x04	uInt32	Active energy import L123 T2	Wh	1 Wh
0x05	uInt32	Active energy export L123 T1	Wh	1 Wh
0x06	uInt32	Active energy export L123 T2	Wh	1 Wh
0x07	uInt32	Reactive energy import L123 T1	varh	1 varh
0x08	uInt32	Reactive energy import L123 T2	varh	1 varh
0x09	uInt32	Reactive energy export L123 T1	varh	1 varh
0x0A	uInt32	Reactive energy export L123 T2	DL	varh
0x0B	Int32	Active power L123	W	1 W
0x0C	Int32	Active power L1	W	1 W
0x0D	Int32	Active power L2	W	1 W
0x0E	Int32	Active power L3	W	1 W
0x0F	Int32	Current L123	mA	1 mA
0x10	Int32	Current L1	mA	1 mA
0x11	Int32	Current L2	mA	1 mA
0x12	Int32	Current L3	mA	1 mA
0x13	Int32	Reserved for future applications		
0x14	Int32	Voltage L1-N	V	100 mV
0x15	Int32	Voltage L2-N	V	100 mV
0x16	Int32	Voltage L3-N	V	100 mV
0x17	Int8	Power factor L1	-11	0.01
0x18	Int8	Power factor L2	-11	0.01
0x19	Int8	Power factor L3	-11	0.01
0x1A	Int16	Frequency	Hz	0.1 Hz
0x1B	Int32	Average Power (reserved for future release)	W	1 W
0x1C	uInt32	Active energy import L123 T1	kWh	1 kWh
0x1D	uInt32	Active energy import L123 T2	kWh	1 kWh
0x1E	uInt32	Active energy export L123 T1	kWh	1 kWh
0x1F	uInt32	Active energy export L123 T2	kWh	1 kWh
0x20	ulnt32	Reactive energy import L123 T1	kvarh	1 kvarh
0x21	ulnt32	Reactive energy import L123 T2	kvarh	1 kvarh
0x22	ulnt32	Reactive energy export L123 T1	kvarh	1 kvarh
0x23	ulnt32	Reactive energy export L123 T2	kvarh	1 kvarh
0x24	ulnt64	Active energy import L123 T1	Wh	1 Wh
0x25	ulnt64	Active energy import L123 T2	Wh	1 Wh
0x26	ulnt64	Active energy export L123 T1	Wh	1 Wh
0x27	ulnt64	Active energy export L123 T2	Wh	1 Wh
0x28	ulnt64	Reactive energy import L123 T1	varh	1 varh
0x29	ulnt64	Reactive energy import L123 T2	varh	1 varh
Ux2A	ulnt64	Reactive energy export L123 T1	varh	1 varh
0x2B	ulnt64	Reactive energy export L123 T2	varh	1 varh
0xF0	ulnt8	Error code		
0xF1	ulnt32 Hex	Serial number		
0xF2	ulnt32 Hex	Factory number		

ID	Туре	Description	Unit	Resolution
0xF3	ulnt16	Current transformer primary		
0xF4	uInt16	Current transformer secondary		
0xF5	uInt16	Voltage transformer primary		
0xF6	uInt16	Voltage transformer secondary		
0xF7	uInt8	Meter type		
0xF8	uInt32	MID year of certification		BCD
0xF9	uInt32	Year of manufacture		BCD
0xFA	uInt32	Firmware version		ASCII
0xFB	uInt32	MID Mess-version		ASCII
0xFC	uInt32	Manufacturer		ASCII
0xFD	uInt32	Hardware index		ASCII
0xFE	uInt32	Current system time	Time	Epoch

For possible values of the error code please consult the chapter Status Codes

Status Codes

Bit Order	Description
0	Time set
1	Current transformer ratio adjusted
2	Voltage transformer ratio adjusted
3	Impulse Length adjusted
4	Impulse Ratio adjusted
5	Voltage Interruption
6	Time not valid or not synchronized
7	Logbook full

CRC-8 Checksum

The checksum is based on the following polynomial: $x^8 + x^2 + x^1 + x^0$ (CRC-8-CCITT)

Example implementation in Javascript:

```
function crc8 encode(data) {
    var xorOut = 0 \times 0000;
    var table = [
        0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B,
        0x12, 0x15, 0x38, 0x3F, 0x36, 0x31,
        0x24, 0x23, 0x2A, 0x2D, 0x70, 0x77,
        0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65,
        0x48, 0x4F, 0x46, 0x41, 0x54, 0x53,
        0x5A, 0x5D, 0xE0, 0xE7, 0xEE, 0xE9,
        0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF,
        0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
        0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B,
        0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1,
        0xB4, 0xB3, 0xBA, 0xBD, 0xC7, 0xC0,
        0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2,
        0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4,
        0xED, 0xEA, 0xB7, 0xB0, 0xB9, 0xBE,
        0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88,
        0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
        0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C,
        0x35, 0x32, 0x1F, 0x18, 0x11, 0x16,
        0x03, 0x04, 0x0D, 0x0A, 0x57, 0x50,
        0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42,
        0x6F, 0x68, 0x61, 0x66, 0x73, 0x74,
        0x7D, 0x7A, 0x89, 0x8E, 0x87, 0x80,
        0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6,
        0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
        0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2,
        OxEB, OxEC, OxC1, OxC6, OxCF, OxC8,
        0xDD, 0xDA, 0xD3, 0xD4, 0x69, 0x6E,
        0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C,
        0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A,
        0x43, 0x44, 0x19, 0x1E, 0x17, 0x10,
        0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26,
        0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
        0x4E, 0x49, 0x40, 0x47, 0x52, 0x55,
        0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F,
        0x6A, 0x6D, 0x64, 0x63, 0x3E, 0x39,
        0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B,
        0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D,
        0x14, 0x13, 0xAE, 0xA9, 0xA0, 0xA7,
        0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91,
        0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
        0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5,
        OxCC, OxCB, OxE6, OxE1, OxE8, OxEF,
        0xFA, 0xFD, 0xF4, 0xF3
    ];
    var crc = 0 \times 0000;
    for (var j = 0; j < data.length; j++) {
        crc = table[crc ^ data[j]];
    }
    return (crc ^ xorOut) & 0xFFFF;
}
```


EMU Metering GmbH Friemarer Str. 38 99867 Gotha Deutschland

Phone: +49 (0)3621 510 40 70

hello@emu-metering.de www.emu-metering.de

EMU Electronic AG Jöchlerweg 2 CH-6340 Baar

Switzerland

Phone: +41 (0)41 545 03 00

helpdesk@emuag.ch www.emuag.ch